
Help Center Article

SECRETS MANAGER  GET STARTED

Developer Quick Start

View in the help center:
https://bitwarden.com/help/developer-quick-start/

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 1 of 5

https://bitwarden.com/help/developer-quick-start/

Developer Quick Start
Bitwarden Secrets Manager enables developers, DevOps, and cybersecurity teams to centrally store, manage, and deploy secrets at scale.
The Secrets Manager CLI is your primary vehicle for injecting secrets into your applications and infrastructure through an authenticated
machine account.

In this article, we'll demonstrate use of the Secrets Manager CLI by looking at a few ways to retrieve database credentials stored in your
vault to be injected at container runtime for a Bitwarden Unified Docker image.

 Tip

If you're looking for SDK information and language wrappers for Secrets Manager functionality, refer to this article.

If you haven't already gone through the Secrets Manager Quick Start article, we recommend doing so before reading on.

In this most simple example, you'll retrieve database credentials stored in your vault and store them as temporary environment variables
on a Linux system. Once stored, you'll inject them at runtime inside a docker run command. To do this, you'll need to have installed:

The Secrets Manager CLI can be logged in to using an access token generated for a particular machine account. This means that only
secrets and projects which the machine account has access to may be interacted with using the CLI (learn more about machine
account permissions). There are a number of ways to authenticate a CLI session, but for the simplest option do so by saving an
environment variable BWS_ACCESS_TOKEN with the value of your access token, for example:

Next, use the following command to retrieve your database username and store it as a temporary environment variable. In this example, f
c3a93f4-2a16-445b-b0c4-aeaf0102f0ff represents the specific identifier for the database username secret:

This command will save the value of your secret to a temporary environment variable, which will be cleared on system reboot, user
logout, or in any new shell. Now, run the same command for the database password:

Basic tutorial

Bitwarden Secrets Manager CLI

Docker

A command-line JSON processor like jq

Authenticate

Bash

export BWS_ACCESS_TOKEN=0.48c78342-1635-48a6-accd-afbe01336365.C0tMmQqHnAp1h0gL8bngprlPOYutt0:B3h5D

+YgLvFiQhWkIq6Bow==

Retrieve the secret

Bash

export SECRET_1=$(bws secret get fc3a93f4-2a16-445b-b0c4-aeaf0102f0ff | jq '.value')

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 2 of 5

http://bitwarden.com.test/help/secrets-manager-cli/
http://bitwarden.com.test/help/secrets/
http://bitwarden.com.test/help/machine-accounts/
http://bitwarden.com.test/help/install-and-deploy-unified-beta/
http://bitwarden.com.test/help/secrets-manager-sdk/
http://bitwarden.com.test/help/secrets-manager-quick-start/
http://bitwarden.com.test/help/access-tokens/
http://bitwarden.com.test/help/machine-accounts/
http://bitwarden.com.test/help/service-accounts/#create-a-service-account
http://bitwarden.com.test/help/service-accounts/#create-a-service-account
http://bitwarden.com.test/help/service-accounts/#create-a-service-account
http://bitwarden.com.test/help/secrets-manager-cli/
https://docs.docker.com/get-docker/
https://stedolan.github.io/jq/

Now that your database credentials are saved as temporary environment variables, they can be injected inside a docker run command.
In this example, we've omitted many of variables required by Bitwarden Unified to emphasize the injected secrets:

When this command is run, your Docker container will start up and inject your database credentials from the temporarily stored
environment variables, allowing you to securely spin up Bitwarden Unified without passing sensitive values as plaintext.

In this example, you'll use the Secrets Manager CLI in your Docker image to inject database credentials stored in your vault at runtime.
You'll accomplish this by manipulating your Dockerfile to install the CLI on the image, instead of on the host, and to retrieve the database
credentials at container runtime. You'll then prepare your environment variables file for injection and string it all together by running a
container.

To install the Secrets Manager CLI in your Docker image, you'll need to add the following to your Dockerfile:

Bash

export SECRET_2=$(bws secret get 80b55c29-5cc8-42eb-a898-acfd01232bbb | jq '.value')

Inject the secret

Bash

docker run -d --name bitwarden -env BW_DB_USERNAME=$SECRET_1 BW_BD_PASSWORD=$SECRET_2 bit

warden/self-host:beta

Advanced tutorial

Setup your Dockerfile

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 3 of 5

http://bitwarden.com.test/help/install-and-deploy-unified-beta/

Next, use an entrypoint.sh file in order to inject secrets at run time. One method is to construct RUN statements in your entrypoint.
sh file that will retrieve each credential . This however, is not the only method you'd be able to implement:

Plain Text

Install dependencies

ENV DEBIAN_FRONTEND=noninteractive

RUN apt-get update && \

 apt-get install -y \

 ca-certificates \

 curl \

 jq \

 unzip && \

 rm -rf /var/lib/apt/lists/*

Download bws

RUN curl -LO https://github.com/bitwarden/sdk/releases/download/bws-v1.0.0/bws-x86_64-unknown-linux

-gnu-1.0.0.zip && \

 unzip bws-x86_64-unknown-linux-gnu-1.0.0.zip -d /usr/local/bin/ && \

 rm -f bws-x86_64-unknown-linux-gnu-1.0.0.zip

Add anything else you will need to your image

Entrypoint script will retrieve secrets at runtime

COPY ./entrypoint.sh /

ENTRYPOINT ["/entrypoint.sh"]

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 4 of 5

These RUN statements will prompt your Dockerfile to retrieve the indicated secrets, where fc3a93f4-2a16-445b-b0c4-aeaf0102f0ff
represents the secret's specific identifier. The other option included in the code example represents the secret's name, 'echo $SECRET_
NAME'.

To build the docker image, first make entrypoint.sh executable:

Build the image:

Now that your database credentials are primed and ready for injection, start up your container:

When this command is run, your Docker container will start up and inject your database credentials from the values retrieved by the
container, allowing you to securely spin up Bitwarden Unified without passing sensitive values as plaintext.

Plain Text

#!/usr/bin/env bash

One way to retrieve individual secrets is to use the `get` command and extract the value:

SECRET_1=$(bws secret get fc3a93f4-2a16-445b-b0c4-aeaf0102f0ff | jq '.value')

Another option., this method is sensitive to spaces in the secret name. See the `run` command doc

umentation for more options

bws run -- 'echo $SECRET_NAME'

Run your project

Build the image

Plain Text

chmod +x ./entrypoint.sh

Plain Text

docker build -t image-name

Run the container

Bash

docker run --rm -it -e BWS_ACCESS_TOKEN=<your-access-token> image-name

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 5 of 5

