
R E S O U R C E C E N T E R

What is password
hashing?

Get the full interactive view at

https://bitwarden.com/sv-se/resources/what-is-password-hashing/

Säker och pålitlig lösenordshanterare med öppen källkod för företag

© 2025 Bitwarden Inc | Page 1 of 7

https://bitwarden.com/sv-se/resources/what-is-password-hashing/

Security affects everyone, from individual users to enterprise organizations. Without robust security measures, data remains vulnerable,

supply chains face breach risks, and users constantly react to compromised credentials. Fortunately, most modern operating systems

and services implement strong security foundations, with the password hash serving as a cornerstone technology.

While a password hash may not be something users think about daily, it underpins nearly all security mechanisms in modern computing

environments.

Understanding what is hashing

A password hash transforms a user's password into a fixed-length string of jumbled characters

that cannot be easily reversed or deciphered. When someone creates an account on any

platform — whether a website, operating system, email service, or banking portal — their

password is typically run through a hash password function before being stored in the service's

database.

The essence of a password hash lies in its protective qualities. By converting passwords into

seemingly random character strings, systems store authentication data in a format that

remains secure even if a database is compromised. Even when hackers gain unauthorized

access to servers, they face the significant challenge of reverse-engineering these password

hashes — a process requiring substantial computational resources and expertise.

The core characteristics that make a password hash effective include irreversibility,

consistency, and collision resistance. Unlike encryption, hashing operates as a one-way

process, making it extremely difficult to derive the original password from its hash. The same

password always generates identical hash output when processed with the same parameters.

Modern algorithms such as bcrypt , Argon2, and SHA-256 minimize the possibility of different

passwords producing identical hashes.

Understand your account encryption key.

A password is typically

run through a hash

password function

before being stored in

the service's database.

The password hash process

The technical workflow to hash password inputs follows a straightforward but secure pattern. A user creates their plaintext password

during account setup. The system processes this password through a password hasher function combined with a random "salt" value to

generate the final hash. Only the password hash, not the original password, is stored in the system database. During subsequent login

attempts, the system applies the same hashing process to the entered password and compares the result with the stored hash. Login

succeeds only when the newly generated hash matches the stored hash exactly.

In this process, a "salt" plays a crucial role. A salt is a random string of characters added to the plaintext password before hashing,

resulting in a structure similar to:

Original Password: AyL*fZ%W!C^X@7RC + Salt Value: $random_SaltValue$ = Hashed Password

Säker och pålitlig lösenordshanterare med öppen källkod för företag

© 2025 Bitwarden Inc | Page 2 of 7

https://preview.bitwarden.com/sv-se/help/account-encryption-key/

The critical importance of salt values

Salting significantly enhances password security by protecting against two primary attack vectors. Rainbow table attacks use

precomputed tables of password hashes to reverse-engineer passwords from stolen hash databases. By adding unique salts to each

password, systems render these precomputed tables ineffective.

Brute-force attacks employ trial-and-error methods that systematically test possible combinations until finding the correct password.

Salting makes this approach exponentially more difficult by requiring attackers to crack each password individually rather than

leveraging patterns across multiple accounts.

Evaluate your password security.

Why organizations should implement password hash protection

The password hash serves as the underlying process that significantly increases the difficulty

for malicious actors attempting to access systems. Even when attackers employ

sophisticated brute-force methods, properly hashed passwords remain secure.

Additionally, password hash protection prevents attackers from directly leveraging stolen

credentials in the event of a data breach. Without hashing, compromised passwords would

appear in plain text , potentially compromising multiple accounts when users reuse credentials

across services. The combination of hashing with salting provides enhanced resistance against

both brute-force and rainbow table attacks.

Read more:

Explore NIST guidelines for

stronger passwords.

Säker och pålitlig lösenordshanterare med öppen källkod för företag

© 2025 Bitwarden Inc | Page 3 of 7

https://preview.bitwarden.com/sv-se/how-secure-is-my-password/
https://preview.bitwarden.com/sv-se/blog/3-tips-from-nist-to-keep-passwords-secure/
https://preview.bitwarden.com/sv-se/blog/3-tips-from-nist-to-keep-passwords-secure/
https://preview.bitwarden.com/sv-se/blog/3-tips-from-nist-to-keep-passwords-secure/

Essential password hash tools

Several proven tools support effective password hash implementations:

Password hashing algorithms

Password hash libraries

Security services

Password managers

Password managers complement password hashing systems. While servers handle the hashing

of passwords, password managers help users create, store, and use strong, unique passwords

without needing to memorize them. Solutions like Bitwarden generate complex passwords that

maximize the security benefits of proper hashing algorithms. By encouraging the use of unique

passwords for each service, password managers effectively neutralize the risk of credential

reuse across multiple platforms — a common vulnerability that even strong hashing cannot

protect against when users employ identical passwords across services.

Try out the password security checker tool!

While servers handle

the hashing of

passwords, password

managers help users

create, store, and use

strong, unique

passwords without

needing to memorize

them.

PBKDF2 (Password-Based Key Derivation Function 2) is a widely adopted and trusted

method for deriving cryptographic keys from passwords, using salt values to enhance

security.

Argon2 offers a memory-hard password hashing algorithm specifically designed to resist

brute-force and GPU-based attacks.

Bcrypt provides an open-source, adaptive password hashing algorithm balanced for

performance and security.

SHA-256 and SHA-512 serve as widely used hash functions that convert variable-sized

inputs into fixed-size outputs.

Bcrypt offers developers an accessible interface for implementing and verifying passwords

with the bcrypt algorithm.

Argon2-cffi implements the Argon2 password hashing algorithm in a secure, reliable

manner.

Hashlib provides various hash functions, including SHA-256 and SHA-512, for general-

purpose hashing.

Bitwarden Secrets Manager manages secrets securely, including password storage and

handling.

Google Cloud Key Management Service enables organizations to generate, distribute, and

use cryptographic keys for password hashing securely.

Säker och pålitlig lösenordshanterare med öppen källkod för företag

© 2025 Bitwarden Inc | Page 4 of 7

https://preview.bitwarden.com/sv-se/password-security-checker/
https://preview.bitwarden.com/sv-se/products/secrets-manager/

Scaling password hashing for growing organizations

As applications grow in size and complexity, organizations face increasing challenges in managing password hashing securely. Effective

scaling strategies include implementing distributed password hashing systems that allow applications to scale by distributing

password hashes across multiple servers or databases. Authentication platforms like Auth0 and Stytch support this approach

effectively.

Effective scaling of password hashing requires organizations to address several factors:

Organizations must handle large volumes of user data efficiently while maintaining security and privacy.

Plan for increased traffic and authentication requests, and regularly monitor system performance.

Staying current with security patches and updates is essential, as is using secure, modern hash functions.

Implementing unique salt values for each password and iterating the hashing process appropriately provides additional protection.

Many organizations benefit from leveraging specialized services like Authgear and compromised password detection tools like

Enzoic.

Encouraging organization-wide password manager adoption complements server-side hashing for a comprehensive security

approach.

Säker och pålitlig lösenordshanterare med öppen källkod för företag

© 2025 Bitwarden Inc | Page 5 of 7

Password hash best practices

Organizations seeking to implement effective password hashing systems should follow the

following essential practices, many of which work harmoniously with password manager

adoption.

Select strong, proven password hashing functions

Organizations should choose well-established algorithms like bcrypt , Argon2, or PBKDF2 that

have undergone extensive testing and review by the cryptographic community as reliable

password hashing options.

Balance security and performance with work factors

Adjusting the computational requirements of hash functions allows organizations to balance

security against performance needs. Higher work factors increase resistance to brute-force

attacks, but reduce overall system performance. Finding the optimal balance depends on

each organization's specific requirements.

Implement unique salt values

Using randomly generated salt values for each user's password prevents attackers from

leveraging precomputed hash databases and makes brute-force attempts significantly less

efficient.

Store salt values properly

Organizations should generate a separate random value for each user's password and store it

alongside the hashed password to prevent rainbow table attacks.

Apply iterative hashing

Increasing computational overhead through multiple hashing iterations slows down brute-

force attempts while maintaining reasonable performance for legitimate authentication.

Employ memory-hard hash functions

Algorithms like Argon2 consume computational resources in ways that resist GPU-based

attacks, ensuring stronger password protection.

Maintain updated dependencies

Organizations must regularly update and patch all dependencies used in password hashing

implementation, especially libraries or frameworks that might contain security vulnerabilities.

By implementing comprehensive password hash strategies, organizations create a solid

foundation for their broader security architecture, protecting both their systems and their

users' sensitive information from increasingly sophisticated cyber threats.

For optimal results, organizations should encourage employees and users to adopt password

managers alongside these password hashing implementations. This creates a powerful two-

pronged approach where strong passwords are both generated and stored securely by users

while being properly protected through hashing on the server side.

Read more:

Learn about master

password best practices.

Säker och pålitlig lösenordshanterare med öppen källkod för företag

© 2025 Bitwarden Inc | Page 6 of 7

https://preview.bitwarden.com/sv-se/help/master-password/
https://preview.bitwarden.com/sv-se/help/master-password/
https://preview.bitwarden.com/sv-se/help/master-password/

Get started with Bitwarden

Password managers like Bitwarden complement password hashing technologies by addressing

security from the user side, while hashing protects from the server side. These tools work

together by enabling the generation of complex, unique passwords that maximize the

effectiveness of hashing algorithms while solving the human tendency to create weak or

reused passwords.

Password managers implement their own encryption before passwords are transmitted,

creating a zero-knowledge security model that parallels the server's hashing protection. Many

password managers also include breach monitoring to alert users when credentials appear in

data breaches, providing an additional protection layer beyond server-side hashing. This

creates a comprehensive security approach — strong, unique passwords protected by client-

side encryption before being secured again through server-side hashing, effectively closing

security gaps that either solution alone cannot address.

Read more:

Discover the encryption

methods behind Bitwarden.

Säker och pålitlig lösenordshanterare med öppen källkod för företag

© 2025 Bitwarden Inc | Page 7 of 7

https://preview.bitwarden.com/sv-se/help/what-encryption-is-used/
https://preview.bitwarden.com/sv-se/help/what-encryption-is-used/
https://preview.bitwarden.com/sv-se/help/what-encryption-is-used/

